Lecture 1: One-way Functions

Lecture 1: One-way Functions

- Learn a new Mathematical language
- Learn a new Mathematical language
- Encouraged to speak this language
- Learn a new Mathematical language
- Encouraged to speak this language
- Encouraged to conjecture

Algorithm and Running-time

Definition (Algorithm)

An algorithm \mathcal{A} is a deterministic Turing machine whose input and output are strings over alphabet $\Sigma=\{0,1\}$.

Algorithm and Running-time

Definition (Algorithm)

An algorithm \mathcal{A} is a deterministic Turing machine whose input and output are strings over alphabet $\Sigma=\{0,1\}$.

Definition (Running-time)

An algorithm \mathcal{A} is said to run in time $T(n)$ if for all $x \in\{0,1\}^{n}$, $\mathcal{A}(x)$ halts within $T(|x|)$ steps. \mathcal{A} runs in polynomial time if there exists a constant c such that \mathcal{A} runs in time $T(n)=n^{c}$.

Algorithm and Running-time

Definition (Algorithm)

An algorithm \mathcal{A} is a deterministic Turing machine whose input and output are strings over alphabet $\Sigma=\{0,1\}$.

Definition (Running-time)

An algorithm \mathcal{A} is said to run in time $T(n)$ if for all $x \in\{0,1\}^{n}$, $\mathcal{A}(x)$ halts within $T(|x|)$ steps. \mathcal{A} runs in polynomial time if there exists a constant c such that \mathcal{A} runs in time $T(n)=n^{c}$.

An algorithm is efficient if it runs in polynomial time.

Algorithm and Running-time

Definition (Algorithm)

An algorithm \mathcal{A} is a deterministic Turing machine whose input and output are strings over alphabet $\Sigma=\{0,1\}$.

Definition (Running-time)

An algorithm \mathcal{A} is said to run in time $T(n)$ if for all $x \in\{0,1\}^{n}$, $\mathcal{A}(x)$ halts within $T(|x|)$ steps. \mathcal{A} runs in polynomial time if there exists a constant c such that \mathcal{A} runs in time $T(n)=n^{c}$.

An algorithm is efficient if it runs in polynomial time.

- Think: Why?

Randomized Algorithms

Definition (Randomized (PPT) Algorithm)

A randomized algorithm, also called a probabilitic polynomial-time Turing machine and abbreviated as PPT, is a Turing machine equipped with an extra randomness tape. Each bit of the randomness tape is uniformly and independently chosen.

Randomized Algorithms

Definition (Randomized (PPT) Algorithm)

A randomized algorithm, also called a probabilitic polynomial-time Turing machine and abbreviated as PPT, is a Turing machine equipped with an extra randomness tape. Each bit of the randomness tape is uniformly and independently chosen.

- Output is a distribution

Randomized Algorithms

Definition (Randomized (PPT) Algorithm)

A randomized algorithm, also called a probabilitic polynomial-time Turing machine and abbreviated as PPT, is a Turing machine equipped with an extra randomness tape. Each bit of the randomness tape is uniformly and independently chosen.

- Output is a distribution
- Think: Define using a coin-tossing oracle

Function Computation

Definition (Function Computation)

A randomized algorithm \mathcal{A} computes a function
$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, if for all $x \in\{0,1\}^{*}, \mathcal{A}$ on input x, outputs $f(x)$ with probability 1 . The probability is taken over the random tape of \mathcal{A}.

Function Computation

Definition (Function Computation)

A randomized algorithm \mathcal{A} computes a function
$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, if for all $x \in\{0,1\}^{*}, \mathcal{A}$ on input x, outputs $f(x)$ with probability 1 . The probability is taken over the random tape of \mathcal{A}.

Without loss of generality, we can restrict to functions with binary output

Function Computation

Definition (Function Computation)

A randomized algorithm \mathcal{A} computes a function
$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, if for all $x \in\{0,1\}^{*}, \mathcal{A}$ on input x, outputs $f(x)$ with probability 1 . The probability is taken over the random tape of \mathcal{A}.

Without loss of generality, we can restrict to functions with binary output

- Think: Relax the definition to work with probability $1-2^{-|x|}$

Function Computation

Definition (Function Computation)

A randomized algorithm \mathcal{A} computes a function
$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, if for all $x \in\{0,1\}^{*}, \mathcal{A}$ on input x, outputs $f(x)$ with probability 1 . The probability is taken over the random tape of \mathcal{A}.

Without loss of generality, we can restrict to functions with binary output

- Think: Relax the definition to work with probability $1-2^{-|x|}$
- Think: Amplify an algorithm which is correct only with probability $\frac{1}{2}+\frac{1}{\text { poly(|x|) }}$ into one which is correct with probability $1-2^{-|x|}$.

Adversaries

Definition (Non-Uniform PPT)

A non-uniform probabilistic polynomial-time Turing machine (abbreviated as n.u. p.p.t.) A is a sequence of probabilistic machines $A=\left\{A_{1}, A_{2}, \ldots\right\}$ for which there exists a polynomial $d(\cdot)$ such that the description size of $\left|A_{i}\right|<d(i)$ and the running time of A_{i} is also less than $d(i)$. We write $A(x)$ to denote the distribution obtained by running $A_{|x|}(x)$.

One-way Functions

Intuition:

One-way Functions

Intuition: A function f is an one-way function if

One-way Functions

Intuition: A function f is an one-way function if

- Easy to compute $f(x)$ given x

One-way Functions

Intuition: A function f is an one-way function if

- Easy to compute $f(x)$ given x
- Difficult to compute x from $f(x)$

One-way Functions

Intuition: A function f is an one-way function if

- Easy to compute $f(x)$ given x : Use language of "Function Computation"
- Difficult to compute x from $f(x)$

One-way Functions

Intuition: A function f is an one-way function if

- Easy to compute $f(x)$ given x : Use language of "Function Computation"
- Difficult to compute x from $f(x)$: Use language of "n.u. PPT" and "Function Computation"

One-way Functions

Intuition: A function f is an one-way function if

- Easy to compute $f(x)$ given x : Use language of "Function Computation"
- Difficult to compute x from $f(x)$: Use language of "n.u. PPT" and "Function Computation"
- May be possible to partially recover x

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute.

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute.
, and
(2) Hard to invert.

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert.

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, for any input length

$$
n \in \mathbb{N}
$$

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, for any input length

$$
n \in \mathbb{N}
$$

Probability of Inversion is small

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, for any input length

$$
n \in \mathbb{N}
$$

$] \leqslant$ small

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, for any input length

$$
n \in \mathbb{N}
$$

$$
\operatorname{Pr}\left[x \leftarrow_{\leftarrow}^{\varsigma}\{0,1\}^{n}\right.
$$

$$
] \leqslant \text { small }
$$

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, for any input length

$$
n \in \mathbb{N}
$$

$$
\operatorname{Pr}\left[x \leftarrow_{\leftarrow}^{\leftarrow}\{0,1\}^{n} ; y \leftarrow f(x)\right.
$$

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, for any input length

$$
n \in \mathbb{N}
$$

$$
\operatorname{Pr}\left[x \leftarrow_{\leftarrow}^{\varsigma}\{0,1\}^{n} ; y \leftarrow f(x): f(\mathcal{A}(\quad y))=y\right] \leqslant \text { small }
$$

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, there exists a fast decaying function $\nu(\cdot)$ such that for any input length $n \in \mathbb{N}$,

$$
\operatorname{Pr}\left[x \leftarrow_{\leftarrow}^{s}\{0,1\}^{n} ; y \leftarrow f(x): f(\mathcal{A}(\quad y))=y\right] \leqslant \nu(n)
$$

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, there exists a fast decaying function $\nu(\cdot)$ such that for any input length $n \in \mathbb{N}$,

$$
\operatorname{Pr}\left[x \leftarrow_{\leftarrow}^{s}\{0,1\}^{n} ; y \leftarrow f(x): f\left(\mathcal{A}\left(1^{n}, y\right)\right)=y\right] \leqslant \nu(n)
$$

Negligible Function

Definition (Negligible Function)

A function $\nu(n)$ is negligible if for every c, there exists some n_{0} such that for all $n>n_{0}, \nu(n) \leqslant \frac{1}{n^{c}}$.

Negligible Function

Definition (Negligible Function)

A function $\nu(n)$ is negligible if for every c, there exists some n_{0} such that for all $n>n_{0}, \nu(n) \leqslant \frac{1}{n^{c}}$.
(1) Negligible function decays faster than all "inverse-polynomial" functions

Negligible Function

Definition (Negligible Function)

A function $\nu(n)$ is negligible if for every c, there exists some n_{0} such that for all $n>n_{0}, \nu(n) \leqslant \frac{1}{n^{c}}$.
(1) Negligible function decays faster than all "inverse-polynomial" functions
(2) That is, $n^{-\omega(1)}$

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, there exists a negligible function $\nu(\cdot)$ such that for any input length $n \in \mathbb{N}$,

$$
\operatorname{Pr}\left[x \leftarrow_{\leftarrow}^{\S}\{0,1\}^{n} ; y \leftarrow f(x): f\left(\mathcal{A}\left(1^{n}, y\right), y\right)=y\right] \leqslant \nu(n)
$$

