
Lecture 1: One-way Functions

Lecture 1: One-way Functions

Introduction

Learn a new Mathematical language
Encouraged to speak this language
Encouraged to conjecture

Lecture 1: One-way Functions

Introduction

Learn a new Mathematical language

Encouraged to speak this language
Encouraged to conjecture

Lecture 1: One-way Functions

Introduction

Learn a new Mathematical language
Encouraged to speak this language

Encouraged to conjecture

Lecture 1: One-way Functions

Introduction

Learn a new Mathematical language
Encouraged to speak this language
Encouraged to conjecture

Lecture 1: One-way Functions

Algorithm and Running-time

Definition (Algorithm)

An algorithm A is a deterministic Turing machine whose input and
output are strings over alphabet Σ = {0, 1}.

Definition (Running-time)

An algorithm A is said to run in time T (n) if for all x ∈ {0, 1}n,
A(x) halts within T (|x |) steps. A runs in polynomial time if there
exists a constant c such that A runs in time T (n) = nc .

An algorithm is efficient if it runs in polynomial time.

Think: Why?

Lecture 1: One-way Functions

Algorithm and Running-time

Definition (Algorithm)

An algorithm A is a deterministic Turing machine whose input and
output are strings over alphabet Σ = {0, 1}.

Definition (Running-time)

An algorithm A is said to run in time T (n) if for all x ∈ {0, 1}n,
A(x) halts within T (|x |) steps. A runs in polynomial time if there
exists a constant c such that A runs in time T (n) = nc .

An algorithm is efficient if it runs in polynomial time.

Think: Why?

Lecture 1: One-way Functions

Algorithm and Running-time

Definition (Algorithm)

An algorithm A is a deterministic Turing machine whose input and
output are strings over alphabet Σ = {0, 1}.

Definition (Running-time)

An algorithm A is said to run in time T (n) if for all x ∈ {0, 1}n,
A(x) halts within T (|x |) steps. A runs in polynomial time if there
exists a constant c such that A runs in time T (n) = nc .

An algorithm is efficient if it runs in polynomial time.

Think: Why?

Lecture 1: One-way Functions

Algorithm and Running-time

Definition (Algorithm)

An algorithm A is a deterministic Turing machine whose input and
output are strings over alphabet Σ = {0, 1}.

Definition (Running-time)

An algorithm A is said to run in time T (n) if for all x ∈ {0, 1}n,
A(x) halts within T (|x |) steps. A runs in polynomial time if there
exists a constant c such that A runs in time T (n) = nc .

An algorithm is efficient if it runs in polynomial time.

Think: Why?

Lecture 1: One-way Functions

Randomized Algorithms

Definition (Randomized (PPT) Algorithm)

A randomized algorithm, also called a probabilitic polynomial-time
Turing machine and abbreviated as PPT, is a Turing machine
equipped with an extra randomness tape. Each bit of the
randomness tape is uniformly and independently chosen.

Output is a distribution
Think: Define using a coin-tossing oracle

Lecture 1: One-way Functions

Randomized Algorithms

Definition (Randomized (PPT) Algorithm)

A randomized algorithm, also called a probabilitic polynomial-time
Turing machine and abbreviated as PPT, is a Turing machine
equipped with an extra randomness tape. Each bit of the
randomness tape is uniformly and independently chosen.

Output is a distribution

Think: Define using a coin-tossing oracle

Lecture 1: One-way Functions

Randomized Algorithms

Definition (Randomized (PPT) Algorithm)

A randomized algorithm, also called a probabilitic polynomial-time
Turing machine and abbreviated as PPT, is a Turing machine
equipped with an extra randomness tape. Each bit of the
randomness tape is uniformly and independently chosen.

Output is a distribution
Think: Define using a coin-tossing oracle

Lecture 1: One-way Functions

Function Computation

Definition (Function Computation)

A randomized algorithm A computes a function
f : {0, 1}∗ → {0, 1}∗, if for all x ∈ {0, 1}∗, A on input x , outputs
f (x) with probability 1. The probability is taken over the random
tape of A.

Without loss of generality, we can restrict to functions with binary
output

Think: Relax the definition to work with probability 1− 2−|x |

Think: Amplify an algorithm which is correct only with
probability 1

2 + 1
poly(|x |) into one which is correct with

probability 1− 2−|x |.

Lecture 1: One-way Functions

Function Computation

Definition (Function Computation)

A randomized algorithm A computes a function
f : {0, 1}∗ → {0, 1}∗, if for all x ∈ {0, 1}∗, A on input x , outputs
f (x) with probability 1. The probability is taken over the random
tape of A.

Without loss of generality, we can restrict to functions with binary
output

Think: Relax the definition to work with probability 1− 2−|x |

Think: Amplify an algorithm which is correct only with
probability 1

2 + 1
poly(|x |) into one which is correct with

probability 1− 2−|x |.

Lecture 1: One-way Functions

Function Computation

Definition (Function Computation)

A randomized algorithm A computes a function
f : {0, 1}∗ → {0, 1}∗, if for all x ∈ {0, 1}∗, A on input x , outputs
f (x) with probability 1. The probability is taken over the random
tape of A.

Without loss of generality, we can restrict to functions with binary
output

Think: Relax the definition to work with probability 1− 2−|x |

Think: Amplify an algorithm which is correct only with
probability 1

2 + 1
poly(|x |) into one which is correct with

probability 1− 2−|x |.

Lecture 1: One-way Functions

Function Computation

Definition (Function Computation)

A randomized algorithm A computes a function
f : {0, 1}∗ → {0, 1}∗, if for all x ∈ {0, 1}∗, A on input x , outputs
f (x) with probability 1. The probability is taken over the random
tape of A.

Without loss of generality, we can restrict to functions with binary
output

Think: Relax the definition to work with probability 1− 2−|x |

Think: Amplify an algorithm which is correct only with
probability 1

2 + 1
poly(|x |) into one which is correct with

probability 1− 2−|x |.

Lecture 1: One-way Functions

Function Computation

Definition (Function Computation)

A randomized algorithm A computes a function
f : {0, 1}∗ → {0, 1}∗, if for all x ∈ {0, 1}∗, A on input x , outputs
f (x) with probability 1. The probability is taken over the random
tape of A.

Without loss of generality, we can restrict to functions with binary
output

Think: Relax the definition to work with probability 1− 2−|x |

Think: Amplify an algorithm which is correct only with
probability 1

2 + 1
poly(|x |) into one which is correct with

probability 1− 2−|x |.

Lecture 1: One-way Functions

Adversaries

Definition (Non-Uniform PPT)

A non-uniform probabilistic polynomial-time Turing machine
(abbreviated as n.u. p.p.t.) A is a sequence of probabilistic
machines A = {A1,A2, . . . } for which there exists a polynomial
d(·) such that the description size of |Ai | < d(i) and the running
time of Ai is also less than d(i). We write A(x) to denote the
distribution obtained by running A|x |(x).

Lecture 1: One-way Functions

One-way Functions

Intuition:

A function f is an one-way function if
Easy to compute f (x) given x

: Use language of “Function
Computation”

Difficult to compute x from f (x)

: Use language of “n.u. PPT”
and “Function Computation”

May be possible to partially recover x

Lecture 1: One-way Functions

One-way Functions

Intuition: A function f is an one-way function if

Easy to compute f (x) given x

: Use language of “Function
Computation”

Difficult to compute x from f (x)

: Use language of “n.u. PPT”
and “Function Computation”

May be possible to partially recover x

Lecture 1: One-way Functions

One-way Functions

Intuition: A function f is an one-way function if
Easy to compute f (x) given x

: Use language of “Function
Computation”
Difficult to compute x from f (x)

: Use language of “n.u. PPT”
and “Function Computation”

May be possible to partially recover x

Lecture 1: One-way Functions

One-way Functions

Intuition: A function f is an one-way function if
Easy to compute f (x) given x

: Use language of “Function
Computation”

Difficult to compute x from f (x)

: Use language of “n.u. PPT”
and “Function Computation”

May be possible to partially recover x

Lecture 1: One-way Functions

One-way Functions

Intuition: A function f is an one-way function if
Easy to compute f (x) given x : Use language of “Function
Computation”
Difficult to compute x from f (x)

: Use language of “n.u. PPT”
and “Function Computation”

May be possible to partially recover x

Lecture 1: One-way Functions

One-way Functions

Intuition: A function f is an one-way function if
Easy to compute f (x) given x : Use language of “Function
Computation”
Difficult to compute x from f (x): Use language of “n.u. PPT”
and “Function Computation”

May be possible to partially recover x

Lecture 1: One-way Functions

One-way Functions

Intuition: A function f is an one-way function if
Easy to compute f (x) given x : Use language of “Function
Computation”
Difficult to compute x from f (x): Use language of “n.u. PPT”
and “Function Computation”

May be possible to partially recover x

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A, there exists a
fast decaying function ν(·) such that for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y
]
6

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute.

There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A, there exists a
fast decaying function ν(·) such that for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y
]
6

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute.

There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗

, and
2 Hard to invert.

For any n.u. PPT adversary A, there exists a
fast decaying function ν(·) such that for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y
]
6

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert.

For any n.u. PPT adversary A, there exists a
fast decaying function ν(·) such that for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y
]
6

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A,

there exists a
fast decaying function ν(·) such that

for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y
]
6

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A,

there exists a
fast decaying function ν(·) such that

for any input length
n ∈ N,

Probability of Inversion is small

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y
]
6

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A,

there exists a
fast decaying function ν(·) such that

for any input length
n ∈ N,

Pr
[

x
$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y

]
6 small

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A,

there exists a
fast decaying function ν(·) such that

for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n

; y ← f (x) : f (A(

1n,

y)) = y

]
6 small

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A,

there exists a
fast decaying function ν(·) such that

for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x)

: f (A(

1n,

y)) = y

]
6 small

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A,

there exists a
fast decaying function ν(·) such that

for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y
]
6 small

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A, there exists a
fast decaying function ν(·) such that for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(

1n,

y)) = y
]
6 ν(n)

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A, there exists a
fast decaying function ν(·) such that for any input length
n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(1n, y)) = y
]
6 ν(n)

Lecture 1: One-way Functions

Negligible Function

Definition (Negligible Function)

A function ν(n) is negligible if for every c , there exists some n0
such that for all n > n0, ν(n) 6 1

nc .

1 Negligible function decays faster than all “inverse-polynomial”
functions

2 That is, n−ω(1)

Lecture 1: One-way Functions

Negligible Function

Definition (Negligible Function)

A function ν(n) is negligible if for every c , there exists some n0
such that for all n > n0, ν(n) 6 1

nc .

1 Negligible function decays faster than all “inverse-polynomial”
functions

2 That is, n−ω(1)

Lecture 1: One-way Functions

Negligible Function

Definition (Negligible Function)

A function ν(n) is negligible if for every c , there exists some n0
such that for all n > n0, ν(n) 6 1

nc .

1 Negligible function decays faster than all “inverse-polynomial”
functions

2 That is, n−ω(1)

Lecture 1: One-way Functions

One-way Functions

Definition (Strong One-Way Function)

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it
satisfies the following two conditions:

1 Easy to compute. There is a PPT C that computes f (x) on
all inputs x ∈ {0, 1}∗, and

2 Hard to invert. For any n.u. PPT adversary A, there exists a
negligible function ν(·) such that for any input length n ∈ N,

Pr
[
x

$←{0, 1}n; y ← f (x) : f (A(1n, y), y) = y
]
6 ν(n)

Lecture 1: One-way Functions

